Exercise 2

A common inhabitant of human intestines is the bacterium Escherichia coli, named after the German pediatrician Theodor Escherich, who identified it in 1885. A cell of this bacterium in a nutrient-broth medium divides into two cells every 20 minutes. The initial population of a culture is 50 cells.
(a) Find the relative growth rate.
(b) Find an expression for the number of cells after t hours.
(c) Find the number of cells after 6 hours.
(d) Find the rate of growth after 6 hours.
(e) When will the population reach a million cells?

Solution

Part (a)
Assume that the relative growth rate is a constant k.

$$
\frac{1}{P} \frac{d P}{d t}=k
$$

Rewrite the left side using the chain rule.

$$
\frac{d}{d t} \ln P=k
$$

The function that you take a derivative of to get k is $k t+C$, where C is any constant.

$$
\ln P=k t+C
$$

Exponentiate both sides to get P.

$$
\begin{aligned}
P(t) & =e^{k t+C} \\
& =e^{C} e^{k t}
\end{aligned}
$$

Use a new constant P_{0} for e^{C}.

$$
\begin{equation*}
P(t)=P_{0} e^{k t} \tag{1}
\end{equation*}
$$

Use the fact that the population doubles every 20 minutes, or $t=\frac{1}{3}$ hours.

$$
\begin{gathered}
P\left(\frac{1}{3}\right)=P_{0} e^{k / 3}=2 P_{0} \\
e^{k / 3}=2 \\
\ln e^{k / 3}=\ln 2 \\
\frac{k}{3}=\ln 2 \\
k=3 \ln 2 \approx 2.07944 \text { hour }^{-1}
\end{gathered}
$$

Part (b)

Equation (1) then becomes

$$
\begin{equation*}
P(t)=P_{0} e^{(3 \ln 2) t} . \tag{2}
\end{equation*}
$$

Use the fact that the initial population is 50 to determine P_{0}.

$$
P(0)=P_{0} e^{(3 \ln 2) 0}=50 \quad \rightarrow \quad P_{0}=50
$$

Therefore,

$$
P(t)=50 e^{(3 \ln 2) t} .
$$

Part (c)
After 6 hours the E. coli population is

$$
P(6)=50 e^{(3 \ln 2) 6} \approx 13,107,200 .
$$

Part (d)

After 6 hours the rate of population growth is

$$
\left.\frac{d P}{d t}\right|_{t=6}=k P(6)=(3 \ln 2)(13,107,200) \approx 2.72557 \times 10^{7} \frac{\text { cells }}{\text { hour }} .
$$

Part (e)

To find when the population will reach $1,000,000$, set $P(t)=1,000,000$ and solve the equation for t.

$$
\begin{gathered}
P(t)=1000000 \\
50 e^{(3 \ln 2) t}=1000000 \\
e^{(3 \ln 2) t}=20000 \\
\ln e^{(3 \ln 2) t}=\ln 20000 \\
(3 \ln 2) t=\ln 20000 \\
t=\frac{\ln 20000}{3 \ln 2} \approx 4.76257 \text { hours }
\end{gathered}
$$

